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Figure 1. Exploring the Pathogenic
Role of ProtrudinG191V

(A–C) NSC34 cells were transfected with
control GFP, FLAG-protrudin, or FLAG-pro-
trudinG191V vectors. Both wild-type protru-
din and protrudinG191V stimulate neurite
elongation with the same efficiency. The
scale bar represents 50 mm.
(D) Quantification of the percentage of
cells with neurites longer than 30 mm in
the different conditions (means of at least
three independent experiments 5 SEM; at
least 450 cells were scored per condition;
*p < 0.05, Student’s t test). The average
length of neurites in these cells was
58.01 mm 5 3.56 for wild-type protrudin
and 59.55 mm 5 3.66 for protrudinG191V.
(E) Coimmunoprecipitation experiments
between protrudin and Rab11 show that
both wild-type protrudin and protru-
dinG191V interact with Rab11S25N (GDP-
bound form) but not with Rab11Q70L

(GTP-bound form).
(F) Spastin interacts both with wild-type
protrudin and protrudinG191V. To detect
spastin, we used a specific antibody (S51).
Response to Martignoni et al.

To the Editor: I appreciate this opportunity to respond to

the letter by Martignoni et al. In the letter, Martignoni

et al. raised certain concerns over our previous finding,

where we showed that ZFYVE27 (MIM 610243) interacts

with spastin and is mutated in a German family with an
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autosomal-dominant form of hereditary spastic paraplegia

(HSP).1 The index patient of this HSP family was screened

for mutations in the SPG4 gene (MIM 604277) and was

negative for any mutation.

We identified ZFYVE27 as spastin-interacting protein in

a yeast two-hybrid screen, then went on to validate the

interaction between spastin and ZFYVE27 in mammalian

cells by coimmunoprecipitation and colocalization
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studies.1 Furthermore, we showed that endogenous spastin

could interact with overexpressed ZFYVE27. Martignoni

et al. were also able to show that ZFYVE27 is a spastin-in-

teracting protein, which serves as an independent valida-

tion of this interaction. In our study, we observed a dimin-

ished interaction between mutated ZFYVE27 (p.G191V)

and spastin;1 however Martignoni et al. reported that

both wild-type and mutated ZFYVE27 interact with spastin

with similar ability. This discrepancy between our observa-

tion and that of Martignoni et al. could be due to the dif-

ferent systems of overexpression assay used for detecting

this interaction. Moreover, from Figure 1F of Martignoni

et al., it appears that there is a very high level of overex-

pression of mutated ZFYVE27, which might mask a subtle

effect on its interaction with spastin.

In a recent study, Shirane and Nakayama showed that

overexpression of ZFYVE27 in HeLa cells promotes neurite

extension in 5% to 30% of transfected cells.2 Martignoni

et al. did not observe any difference in the ability of

wild-type and mutated ZFYVE27 to promote neurite out-

growth. We have also performed a similar study; however,

we observed a much more pronounced effect of GFP-

ZFYVE27G191V than of wild-type GFP-ZFYVE27 on the pro-

motion of neurite outgrowth (Figure 1). Furthermore, in

silico analysis of the primary sequence of ZFYVE27 revealed

a TGN-endosome sorting motif 186YGAL189 (YXXV), which

is abolished as a result of the p.G191V mutation.

Martignoni et al. brought to our attention that the se-

quence variant c.572G > T (p.G191V) in ZFYVE27, which

we identified in the German HSP family, is also present in

several control populations from different ethnic back-

grounds. At the time of our publication, this sequence var-

iant was not published in the SNP database. Nevertheless,

the possibility of a variable level of pathogenic and non-

pathogenic effects of the p.G191V sequence variant in dif-

ferent ethnic populations cannot be excluded from this

observation. In several genetic disorders, it is been reported

that an identified sequence variant is either pathogenic or

nonpathogenic in different racial backgrounds. A well-

characterized sequence variant is p.M34T in GJB2 (MIM

121011); mutation in this gene causes congenital heredi-

tary nonsyndromic sensorineural deafness. The p.M34T

was originally reported as a pathogenic mutation with

a dominant effect. Later, these findings were questioned,

and p.M34T was suggested to act in a recessive, hypomor-

phic, or nonpathogenic allele in different ethnic popula-

tions (summarized in Pollak et al. 2007).3 When the role

of M34T was reassessed by biochemical and electrophysio-

logical studies, it was concluded that this mutation was

pathogenic and caused mild hearing impairment.4 How-

ever, we agree with Martignoni et al. that the pathogenic

effect of the p.G191V sequence variant detected in

ZFYVE27 in one HSP family (so far) should be interpreted

with caution until additional causative sequence variant(s)

are identified in ZFYVE27 in further HSP cases.

To date, in addition to ZFYVE27, several spastin-interact-

ing proteins have been identified, namely; RTN1, atlastin,
Th
CHMP1B, and NA14. However, to our knowledge, the

functional significance of any of these interacting proteins

(apart from ZFYVE27) with spastin in a cellular pathway

relevant to HSP has not yet elucidated. Conversely, the

role of ZFYVE27 and spastin in a molecular process rele-

vant to HSP is highlighted by recent functional studies

on ZFYVE27 and spastin in neurons.2,5 Recently, Shirane

and Nakayama illustrated that ZFYVE27 (protrudin) plays

a central role in membrane trafficking in neurons and pro-

motes neurite extension.2 They speculate that protrudin

and spastin might together constitute a system for the reg-

ulation of vesicular transport in neurons. Moreover, in

a latest publication, Yu et al. showed that overexpression

of spastin in primary hippocampal neurons leads to exten-

sive neurite outgrowth similar to that observed for pro-

trudin.5 Together, these findings strengthen the role of

spastin and ZFYVE27 (protrudin) in a common cellular

pathway vital for neurons.

Finally, the role of the FYVE family of proteins in HSP

pathogenesis is further reinforced by identification of

mutations in ZFYVE26 (MIM 612012) in the SPG15 sub-

type of HSP.6
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Web Resources

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.

ncbi.nlm.nih.gov/Omim/ (for SPG4, ZFYVE26, ZFYVE27, and

GJB2).

References

1. Mannan, A.U., Krawen, P., Sauter, S.M., Boehm, J., Chronow-

ska, A., Paulus, W., Neesen, J., and Engel, W. (2006). ZFYVE27

Figure 1. Overexpression of GFP-ZFYVE27WT and GFP-
ZFYVE27G191V in NIH 3T3 Cells
When GFP-ZFYVE27WT was overexpressed, we observed a moderate
level of neurite extension in the cells that had been transfected
with GFP-ZFYVE27WT (A). However, overexpression of GFP-
ZFYVE27G191V led to a pronounced outgrowth of neurites from a dis-
tinctive cell soma (B).
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Kisiel, B., Waligóra, J., Krajewski, P., O1dak, M., Korniszewski,
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Personalized Genetics:
A Responsible Approach

To the Editor: A recent paper1 in The Journal aptly

described the challenges inherent in using genomic pro-

files to predict risk for common diseases and to develop

personalized risk-prevention advice. Companies or other

organizations that take a responsible approach to these

challenges can potentially offer new opportunities for

disease prevention, early detection, and treatment.

The authors took a sample of the loci covered by the tests

of seven companies in the field and have shown that most

of these loci do not pass simple quality criteria. The chal-

lenge with the authors’ analysis is that it analyzes the

pool of loci used by all seven companies, instead of break-

ing the analysis down by company or organization; hence,

the approach does not distinguish between organizations

that take a rigorous and responsible approach to the eval-

uation of risk and organizations that base the risk assess-

ment on unreliable scientific information.

We share the authors’ concerns about companies that

report genetic risk based on a single association study or

on studies with methodological weaknesses. However, we

strongly believe that customers can benefit from a person-

alized report of those genetic associations found in ge-

nome-wide-association studies that were replicated in mul-

tiple populations with sound epidemiological, statistical,

and laboratory practices. Many examples of reliable, repli-

cated associations have been reported, including between

transcription factor TCF7L2 (MIM 602228) and diabetes

and between NOD2 (MIM 605956) and Crohn’s disease.2

Taking a responsible approach means that companies

utilize only high-quality association studies to bring cus-

tomers accurate genetic risk predictions, as well as effective

strategies for reducing risk for those genetic conditions to

which they are predisposed. In addition to using rigorous

and transparent scientific standards for inclusion in the
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ness-related M34T mutation of Cx26. Hum. Mol. Genet.
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(2008). Identification of the SPG15 gene, encoding spastizin,

as a frequent cause of complicated autosomal-recessive spastic

paraplegia, including Kjellin syndrome. Am. J. Hum. Genet.
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testing panel, a responsible approach is to provide cus-

tomers and their doctors with resources such as genetic

counselors, physician expertise, and epidemiologists. By

taking a responsible approach, the personalized genomics

community can work together with individuals and their

medical providers to enable people to live longer, healthier

lives.
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Web Resources

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://

www.ncbi.nlm.nih.gov/Omim/
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